

April 2018 Activity Solutions

Warm-Up!

1. Since the $m \angle X=30^{\circ}$ and $m \angle Y=90^{\circ}$, it follows that the $m \angle Z=180-(90+30)=$ $180-120=60^{\circ}$. Therefore, $\Delta \mathrm{XYZ}$ is a 30-60-90 right triangle. In a 30-60-90 right triangle, the length of the longer leg, which is opposite the 60° angle, is $\sqrt{3}$ times the length of the shorter leg, which is opposite the 30° angle, and the length of the hypotenuse is twice that of the shorter leg. As the figure shows, in triangle XYZ , side YZ is the shorter leg, side $X Y$ is the longer leg and side $X Z$ is the hypotenuse. We are told $Y Z=6$ units, so it follows that $X Y=6 \sqrt{3}$ units and $X Z=12$ units.

2. The area of rectangle $A B C D$ is $27(11)=297$ units 2. If we subtract the area of the triangular region that is removed from the area of rectangle $A B C D$, the result is the area of pentagon ABEFD. Now CF $=C D-F D=27-15=12$ units, and $E C=B C-B E=11-6=5$ units. Thus the area of \triangle CEF is $(1 / 2)(12)(5)=30$ units 2. That means the area of pentagon ABEFD is $297-30=$ 267 units 2.
3. Since segment $A P$ is tangent to the circle at A, segment $P A$ will be perpendicular to radius AC. Because the area of the circle is 256π units ${ }^{2}$, we can write the following equation and solve for $r: 256 \pi=\pi r^{2} \rightarrow 256=r^{2} \rightarrow r=16$ units. Using the Pythagorean Theorem with right triangle APC, we now can write the following equation and solve for PC: $(\mathrm{PC})^{2}=12^{2}+16^{2} \rightarrow(\mathrm{PC})^{2}=144+256 \rightarrow(\mathrm{PC})^{2}=400 \rightarrow \mathrm{PC}=$ 20 units.

14

4. Since $A C=A E+E C$, we can determine $E C=15-6=9$ units. Additionally, from a point outside of the circle, the two segments from that exterior point to the two different points of tangency are equal. Thus, $A E=A F$, $B F=B G$ and $C G=C E$. It follows that $A F=6$ units, $B F=14-6=8$ units, $B G=$ 8 units, $C G=9$ units, and finally, $C B=9+8=17$ units.

The Problems are solved in the MATHCOUNTS JJll in in video.

Follow-up Problems

5. The figure appears to be a rectangle from which side CD has been removed and two of the three interior triangles have been shaded, as shown. If we determine the area of rectangle ABCD and subtract from it the area of the unshaded triangle, the result will be the area of the shaded region. The area of the rectangle is $(8)(12)=96 \mathrm{~cm}^{2}$. The area of the unshaded triangle is $(1 / 2)(12)(8)=(6)(8)=48 \mathrm{~cm}^{2}$. That means the area of the shaded region is $96-48=48 \mathrm{~cm}^{2}$.

6. In the figure shown here, we have indicated the different radii and right angles that are known from the information given. Additionally, since each side of the square is 4 units, we can see how the right side is divided into segments of lengths r units, r units and $4-2 r$ units. Thus, $A B=4-2 r$. Similarly, $A C=4-2 r$. Seeing that $B C=2 r$ and using the Pythagorean Theorem with right triangle $A B C$, we can write the following equation and solve for $r:(2 r)^{2}=(4-2 r)^{2}+(4-2 r)^{2} \rightarrow 4 r^{2}=16-16 r+4 r^{2}+16-$
$16 r+4 r^{2} \rightarrow 0=4 r^{2}-32 r+32 \rightarrow 0=r^{2}-8 r+8$. Using the Quadratic Formula with $a=1, b=$ -8 and $c=8$, we get $r=\frac{8 \pm \sqrt{(-8)^{2}-4(1)(8)}}{2(1)}=\frac{8 \pm \sqrt{64-32}}{2}=\frac{8 \pm \sqrt{32}}{2}=\frac{8 \pm 4 \sqrt{2}}{2}=4 \pm 2 \sqrt{2}$.
Since $4+2 \sqrt{2}$ is too large (it's greater than the side of the square), the radius is $4-2 \sqrt{2}$ units.
7. In the figure shown here, we have added the segment from B that is perpendicular to radius AP. This segment completes rectangle BCPO, and now $B Q=P C$, so $P C=9$ units. Radius $A P$ is 16 units, so $A C=16-9=$ 7 units. When we connect the two centers of the externally tangent circles, we get $A B=16+9=25$ units. Now, using the Pythagorean Theorem with right triangle ABC , we have $25^{2}=7^{2}+(B C)^{2} \rightarrow 625=49+(B C)^{2} \rightarrow$ $(B C)^{2}=576 \rightarrow B C=24$ units. Because of rectangle BCPQ, we now know PQ $=24$ units, too.
8. Let's extend segments AD and BC until they intersect at point E , as shown. Notice that $m \angle \mathrm{EBA}$ $=180-120=60^{\circ}$, and $m \angle B A E=180-90=90^{\circ}$. That means the $m \angle E=30^{\circ}$, and $\triangle A B E$ is a $30-60-90$ right triangle. We know that $A B=3$, so using the properties of 30-60-90 right triangles, we see that $E B=2 \times 3=6$. Now consider right triangle CDE with $m \angle C=90^{\circ}$ and $m \angle E=30^{\circ}$. It follows that $m \angle \mathrm{D}=60^{\circ}$ making $\triangle \mathrm{CDE}$ a 30-60-90 right triangle. The length of the longer leg is $\mathrm{EC}=\mathrm{EB}+\mathrm{BC}=6+4=10$. Segment CD is the shorter leg of $\triangle \mathrm{CDE}$. Therefore, according to the properties of 30-60-90 right triangles, we have $C D=\frac{E C}{\sqrt{3}}=\frac{10}{\sqrt{3}}=\frac{10 \sqrt{3}}{3}$.

